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Abstract 

If a crystal is illuminated by a polychromatic beam 
of X-rays, then many orders of each Bragg reflection 
may be stimulated simultaneously, and overlap 
exactly in scattering angle. The overlap of these 
multiple orders along a ray (a central line in reciprocal 
space) poses a problem for Laue methods. A theory 
of the distribution of multiple orders as a function 
of the relevant experimental parameters is presented, 
with the following conclusions: (1) If the angular 
acceptance of the detector is unrestricted, then a 
remarkably large proportion (72.8%) of all Bragg 
reflections occur on single rays for the case of an 
infinite range of incident wavelengths. (2) This pro- 
portion increases to greater than 83% when more 
realistic experimental values of hmax and '~min are 
used. (3) This proportion depends only on the ratio 
of ~max to '~min and not on the space group, unit-cell 
dimensions, crystal orientation or the limiting resolu- 
tion of the crystal d'max (provided d*ax < 2/hmax). (4) 
The total number of single rays, like the total number 
of all stimulated Bragg reflections, is approximately 
proportional to the wavelength range. (5) The propor- 
tion of reflections at a given resolution d* that lie on 
single or double rays depends markedly on d*, and 
on the ratio of Amax to Ami,; it is generally lower at 
low resolution than at high. (6) Restricted angular 
acceptance of the detector can reduce significantly 
both the proportion and the total number of single 
rays. (7) Agreement between the theoretical distribu- 
tions and those derived from analysis of X-ray Laue 
photographs of macromolecular crystals, and from 
extensive computer simulations, is good. It is evident 
that, under a wide variety of experimental conditions, 
the effect of multiple orders is not a serious limitation 
on the use of the Laue method for structure determi- 
nation. The analysis presented has some relevance to 
polychromatic neutron diffraction. 
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I. Introduction 

The recent availability of synchrotron X-ray sources 
has renewed interest in Laue diffraction methods, 
which exploit directly the polychromatic nature of 
such sources. In preliminary studies, Laue diffraction 
from protein crystals (Moffat, Szebenyi & Bilderback, 
1984; Moffat, Schildkamp, Bilderback & Volz, 1986; 
Bilderback, Moffat & Szebenyi, 1984; Helliwell, 1984, 
p. 1468, 1985; Hedman, Hodgson, Helliwell, Lidding- 
ton & Papiz, 19~'5) and from small inorganic crystals 
(Wood, Thompson & Matthewman, 1983; Hails, 
Harding, Helliwell, Liddington & Papiz, 1984; 
Harding et al., in preparation) has been examined. 
These studies suggest that the Laue method possesses 
advantages over more conventional monochromatic 
data collection methods. It makes optimum use of 
the synchrotron radiation spectrum, and affords a 
reduction in exposure time of several orders of magni- 
tude. The Laue method thus permits very brief 
exposures in the millisecond time range on strongly 
scattering protein samples (Bilderback et al., 1984; 
Hajdu, Machin, Campbell, Clifton, Zurek, Gover & 
Johnson, 1986; Moffat et al., 1986) and the 
examination of microcrystals (Hedman et al., 1985). 
A stationary crystal yields integrated intensities 
directly, which are relatively insensitive to transient 
changes in unit-cell dimensions or crystal orientation. 
A typical Laue diffraction pattern contains many 
more reflections than a typical monochromatic 
oscillation pattern. These advantages are particularly 
appropriate for dynamic experiments, in which the 
diffraction intensities change rapidly with time in 
response to a structural perturbation (Wood et al., 
1983; Moffat et al., 1984, 1986; Helliwell, 1985). 

A fundamental complexity of the Laue method is 
the multiple-orders problem, which is revealed when 
Bragg's law is applied to the diffraction of polychro- 
matic X-rays. If a crystal contains a spacing d, it also 
contains spacings d/2,  d / 3 , . . ,  or, in general, d/j ,  
where j is any positive integer. Then Bragg's law is 
simultaneously satisfied by the set of values (d, A), 
(d/2,  A/2), (d/3,  A/3) . . .  (d/ j ,  A/ j )  . . . .  That is, all 
orders of a Bragg reflection are exactly superimposed 
(apart from very small dispersive effects). 

The reciprocal-lattice points corresponding to the 
first and all higher orders lie on a central line passing 
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through the origin of reciprocal space. We denote 
such a central line as a ray (§ 2). Each Laue reflection 
arises from one ray and, conversely, the reciprocal- 
lattice points along each ray contribute to one, and 
only one, Laue reflection. A Laue diffraction pattern 
thus reveals the distribution of rays, whereas a 
monochromatic diffraction pattern reveals the distri- 
bution of reciprocal-lattice points. A Laue reflection 
may arise from the superposition of Bragg reflections: 
it may be single, arising from only one spacing, 
wavelength and structure factor; or double, arising 
from two; or triple, arising from three, and so on. 
The multiplcity of a Laue reflection, which we denote 
by the symbol m, is the number of reciprocal-lattice 
points along the ray which simultaneously diffract for 
the given experimental conditions. 

The intensity of a multiple Laue reflection is the 
sum of the intensities of its constituent Bragg reflec- 
tions, associated with the m reciprocal-lattice points 
along the ray. Since the individual structure factors 
are required if the Laue method is to be used for 
structure determination, the sum must be resolved. 
The constituents overlap exactly in space, and hence 
can only be distinguished in energy, in time, or both. 
In the time-of-flight method with polychromatic 
neutrons (Schultz, Srinivasan, Teller, Williams & 
Lukehart, 1984), neutrons of different energies arrive 
at the detector at different times, and the constituent 
intensities can be measured separately and directly. 
There is no time-of-flight method for X-rays, and no 
suitable energy-sensitive electronic detector exists. 
X-ray film offers modest energy sensitivity which can 
be enhanced by interleaving thin metal foils between 
the films in a multiple film pack. This has permitted 
the constituent intensities of double Laue reflections 
to be resolved (Zurek, Papiz, Machin & Helliwell, 
1985), but it has not yet been possible to apply this 
approach satisfactorily to triple or higher multiples. 

Clearly, the proportion of single Laue reflections 
must be very close to 100% for a narrow wavelength 
range, and must decrease as the range increases. It 
might be thought that, with a wide wavelength range, 
few Laue reflections would be single: most would be 
multiple, arising from several Bragg reflections. 
Further, the proportion of multiple Laue reflections 
might be greater for dense reciprocal lattices. If true, 
structure determination by the Laue method would 
be greatly hindered [and, indeed, it has been little 
used for that purpose over the last 50 years (Amor6s, 
Buerger & Amor6s, 1975)]. However, two initial 
studies of protein crystals with dense reciprocal lat- 
tices that have employed wide wavelength ranges have 
been reported. Moffat et al. (1984) used a range from 
0.73 to 1.77 ~ ,  and Helliwell (1984, p. 1468, 1985) 
used a range from 0.45 to 2.60/~. In both studies, a 
large number of reflections were stimulated simul- 
taneously, of which a remarkably high proportion 
were single, 92.5 and 77.9% respectively. Further- 

more, these and other studies (Hedman et al., 1985; 
Moffat et al., 1986) established that the lifetime of a 
typical protein crystal in a 'white beam' of wide 
wavelength range is enough to allow practical collec- 
tion of a large quantity of data. 

Since a convenient experimental method for resolv- 
ing constituent X-ray intensities in multiple reflec- 
tions is lacking, the nature of the distribution of 
multiple reflections becomes critical. This distribution 
arises in both neutron and X-ray diffraction, yet no 
theoretical analysis which might account for the 
above results seems to have been attempted. We 
examine this distribution here as a function of the 
relevant experimental parameters h . . . .  /~min, * dmax, 
position in reciprocal space and angular acceptance 
of the detector. We begin by considering the probabil- 
ity that a randomly selected reciprocal-lattice point 
is of first, second, third and higher order, and then 
derive the multiplicity distributions for three models 
that increase in experimental realism: infinite 
wavelength range, finite }[max with zero ~-min, and 
arbitrary /~max and /~min (where the latter two models 
have the additional restriction that Amax<2/d*ax). 
We then remove this restriction and derive the multi- 
plicity distribution and the total number of accessible 
reciprocal-lattice points that lie on single and double 
rays. Finally, we consider how these overall multi- 
plicity distributions arise from reflections of a given 
order in a particular region of reciprocal space and 
how they are affected by restricted angular acceptance 
of the detector. 

Note added during publication. On the feasibility of 
the polychromatic Laue method as a means for data 
acquisition, see also Rabinovich & Lourie (1987). 

2. Rays and inner points 

For a stationary crystal and white radiation with 
/~max ~/~ ~/~-min, the reciprocal-lattice points (RLPs) 
whose reflections can be recorded lie between the 
Ewald spheres of radii 1/Ama x and 1/)tmi n. These 
spheres touch at the origin of the reciprocal lattice 
(Fig. la) ,  and the wavelength at which any individual 
RLP diffracts is determined by the reciprocal radius 
of the Ewald sphere passing through it. There is also 
a sample resolution limit d'max (=  1/drain), so that no 
reflections are recorded from RLPs outside a sphere 
centred at the origin with radius d'max. The accessible 
region of reciprocal space, which is cylindrically sym- 
metrical about the incident X-ray beam, may be 
further limited by experimental restrictions on the 
scattering angles. 

Definitions 

A ray is a central line from (0, 0, 0) passing through 
h=  (h, k, l), 2h, 3h, . . . ,  nh, . . . .  If the indexing has 
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been referred to a primitive lattice and if the greatest 
common divisor of h, k, I is 1, then h is the innerpoint 
of the ray. nh is the nth-order point or nth harmonic 
on this ray. A ray of multiplicity m is one containing 
m points inside or on the surface of the accessible 
region of reciprocal space. The accessible region is 
bounded by the surface S specified by d*ax, '~max, 
~min and by any other experimental restrictions. Fig. 
l (b)  shows a ray with five orders inside the d*ax 
sphere, but of which only two are within the accessible 
region. The ray is therefore of multiplicity m = 2. 

As examples (2, 1, 0), (5, ~,, 1), (15, 14, 13) and 
(36, 46, 27) are inner points, but (5, 0, 0), (3, 3, 0), 
(8, 6, 4), (14, 21, 35) and (18, 27, 36) are not, having 
greatest common divisors of 5, 3, 2, 7 and 9 respec- 
tively. 

What proportion of RLPs are inner points? Does 
the proportion vary as the indices get larger? The 

/ /  
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1/kml~ I 

i / 
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' /  X-r ;y  beam \\ " 
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d~°x 

(b) 

Fig. 1. (a) Laue diffraction geometry showing the accessible region 
of  reciprocal space between the Ewald spheres associated with 
hmin and hm~, and the sample resolution limit d*ax. O is the 
origin of reciprocal space. (b) A ray with n orders inside the 
d*~, sphere can have a recorded multiplicity m < n when (n - m) 
RLPs are outside the accessible region. The diagram shows the 
case of n = 5 and m = 2. Only the upper section of  the volume 
of revolution of  the accessible region is shown. 

following theorem is relevant. It concerns a property 
of numbers and is unrelated to the diffraction 
geometry. 

Theorem 1. The probability that a randomly 
chosen RLP is an inner point is 

Q = ( 1 -  1/23)(1 - 1/33)(1 - 1/53)(1 - 1/73) 

x ( 1 - 1 / l 1 3 ) . . . = 0 . 8 3 1 9 1  . . . .  

Proof. The probability that a random integer h, 
chosen between -oo and +0o, is divisible by a positive 
integer n is 1/n. Thus the probability that three ran- 
dom integers h, k, l have a common integer divisor n 
is Pn= 1In 3. The probability that 2 is a common 
divisor is P2 = 1/23. The probability q2 that 2 is not a 
common divisor is 1 - 1/23. Note that q2 includes the 
cases where n is an integer multiple of 2, n =  
4, 6, 8 , . . . .  Similarly p3 -- 1/33 and q3 = 1 - 1/33. Again 
note that q3 includes the cases where n = 6, 9, 1 2 , . . . .  
Thus the probability that a RLP h = (h, k, l) is an 
inner point is given by the probability that the set 
h, k, l does not have any prime 2, 3, 5, 7, 11 , . . .  as a 
common divisor. This probability is that stated in the 
theorem above. 

It will be noted that the proof assumes that h, k, l 
are random integers lying between -0o and + ~ .  
However, to take a case sometimes pertinent to small- 
molecule crystallography, if h, k, I were restricted to 
maximum values of 10, then the terms from 
(1-1 /113)  onwards would be omitted and, say, the 
(1-1/73) term would be slightly inaccurate as the 
probability of 7 not being a common factor. But the 
product is quickly convergent to its limit, and even 
when only the lowest primes 2 and 3 are considered, 
the first two terms yield a product 0-843. In 
macromolecular  crystallography the maximum 
integers are appreciably greater than 10 and any 
approximation is even smaller. Thus for all crystallo- 
graphic purposes it will be a good approximation to 
use Q as the probability that a random RLP is an 
inner point. This probability is independent of posi- 
tion in reciprocal space and in particular is indepen- 
dent of distance from the origin (except when all 
indices are very small). 

If  a region of interest has volume VR, and V* is 
the volume of the reciprocal unit cell, then for VR >> 
V* the number of RLPs in VR is approximately N = 
VR/V*, and the number of inner points in VR is 
Q N = Q V R / V * .  

It may be added that l / Q - -  1+ 1/23+ 
1 / 3 3 + 1 / 4 3 + . . . =  1 .202057 . . .=  st(3), where ~'(3) is 
the Riemann zeta function of order 3. The series 
may be derived by Euler's method of multiplying 
together the series expansions of the individual terms 
( 1 - 1 / 2 3 ) - ~ , . . .  in 1/Q. By direct extension of 
theorem 1, the probability for n dimensions that a 
random RLP is an inner point is 1/~'(n). In two 
dimensions the probability is 1/~'(2) -- 6/7r 2 = 
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0 .6079 . . . ,  and this is a classical result in the theory 
of numbers [theorem 332 of Hardy & Wright (1979)]. 
The problem is sometimes described in terms of the 
visibility of lattice points from the origin, and for 
formal mathematical treatments of theorem 1 for n 
dimensions see Christopher (1956) and Rumsey 
(1966). 

3. Infinite wavelength range: solid-sphere model for 
arbitrary D*, infinite Am~x, zero Ami~ 

Important features of the distribution of harmonics 
within a bounding surface can be understood by 
considering as a model a sphere (Fig. 2) with surface 
S and radius D* (= d'max) centred at the origin of 
reciprocal space containing a large number N of 
RLPs. This is equivalent to taking hmax = O0 and hmin = 
0, and replacing the resultant hemisphere by a com- 
plete sphere. 

Let $2 be the surface of the sphere of radius D*/2,  
and T~ be the shell between D* and D*/2;  let $3 be 
the surface of the sphere of radius D*/3,  and T2 be 
the shell between D*/2 and D*/3;  in general let S,, 
be the surface of the sphere of radius D*/n, and T,, 
be the shell between D*/n and D*/(n + 1). 

Theorem 2. All rays of multiplicity n within S have 
their inner points in the shell T,. 

Proof. An inner point in T, has reciprocal radius 
s satisfying D*/n >_ s > D*/(n + 1). Its nth harmonic 
has reciprocal radius not greater than n (D*/n)= D* 
and is within S, whereas its (n + 1)th harmonic has 
reciprocal radius greater than (n + 1)D*/(n + 1) = D* 
and is outside $. In particular we note that all (m = 1) 

Fig. 2. Infini te-wavelength-range model.  A nest o f  spheres is shown 
where Sn is the surface o f  radius D*/n. T, is the shell be tween 
D*/n and D*/(n+l) with vo lume V(n). The labels ident ify 
the cases for  n = 1, 2, 3. 

Table 1. Multiplicity distribution for infinite wave- 
length range 

Distr ibut ion o f  RLPs Distr ibution o f  rays 

RLP on single rays 72.8% Single rays 87-5% 
RLP on double rays 14.6 Double rays 8.8 
RLP on triple rays 5.4 Triple rays 2.1 
RLP on quadruple rays 2.5 Quadruple rays 0.8 
RLP on higher-order rays 4.7 Higher-order rays 0.8 

100.0 100.0 

single rays of S have their inner points in 7"1, and all 
(m = 2) double rays have their inner points in T2. 

3.1. Distribution of multiplicities 

All single rays start in /'1. The volume of this shell 
(Fig. 2) is V(1)=(1--1/23)VR, where VR is the 
volume,of the whole region bounded by $. Hence the 
number of RLPs in 7"1 is (7/8)N, and since the proba- 
bility of any RLP being an inner point is Q, the 
number of single rays emerging through S is (7/8) QN. 

In general, n-tuple rays start from inner points of 
probability Q in Tn. This shell is of volume 

V(n)=[ l ln  3- l / ( n +  1)3] VR. 

so the number of n-tuple rays emerging through S is 

[1/na-1/(n+ 1)3] QN. 

Since every inner point in the whole volume enclosed 
by S generates a ray, the total number of rays emerg- 
ing from S is QN. Thus the number of Laue reflections 
is a fraction Q of the number of accessible RLPs. 

The distribution of multiplicities can be expressed 
either in terms of RLPs or of rays. Thus a proportion 
(7/8)Q = 72.8% of all RLPs lie on single rays and a 
proportion 7/8 = 87.5% of all rays (Laue reflections) 
are single rays. Similarly 2 (1 /23-1 /33)Q = 14.6% of 
all RLPs lie on double rays, whereas (1 /23-1/33)  = 
8.8% of all rays are double rays. These results are 
extended to higher multiplicities in Table 1. 

It is notable that even in this extreme case of infinite 
wavelength range, a substantial majority (72.8%) of 
RLPs lie on single rays. 

3.2. Other non-re-entrant surfaces 

The above model described the bounding surface 
S as a sphere. The argument evidently applies as well 
to an ellipsoid, a cube, a hemisphere defined by 
arbitrary D*, Amax = 00, Amin = 0, or any surface which 
is non-re-entrant as seen from the origin. Nesting 
inner surfaces S2, $ 3 , . . .  are defined with linear 
dimensions shrunk by factors 2 ,3 , . . .  compared with 
the outer surface $. The volume V(n) of the shell Tn 
is then the same fraction as before of the total volume 
VR and the proportions of rays of the various multi- 
plicities remain unaltered. 
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4. Model for arbitrary D* and ,)kmax, z e r o  ~kmi n 

For convenience in the following analyses we will 
refer to the Ewald spheres of radii 1/Amax, 1/Amin, 
1/n)tma x etc. as the ~max,  '~rnin, nAmax etc. spheres. The 
accessible region illustrated earlier in Fig. l (a)  is 
bounded by the spheres for D*, Amax and Ami,. As 
seen from the origin in Fig. l(b), the bounding surface 
of this region is re-entrant. Every ray from the origin 
passes twice through the D* or Ami, spheres. Though 
the analysis in § 3 therefore cannot be applied 
directly, it provides a technique for handling the 
problem. 

In this section we consider the case when '~min = 0,  
so that the external surface Se is effectively defined 
only by the D* sphere. The internal surface is defined 
by the hma  x sphere, and we a s s u m e  /~max < 2/D*. Fig. 
3 shows the upper section of the volume of revolution. 

The problem is approached by considering the 
external and internal surfaces separately. Fig. 4(a) 
divides the region defined by the outer surface Se into 
shells separated by segments of spheres of radii D*/2, 
D*/3, . . .  as in the solid-sphere model. The multi- 
plicities n of rays having their inner points in each 
shell are also shown. Fig. 4(b) shows the internal 
surface Si defined by the/~rnax sphere. Proportionately 
shrunk surfaces are defined by spheres of radii 
1/2hmax, 1/3hmax,. . . .  A ray having an inner point 
between the 2Amax and 3hma x spheres will also have 
a second-order point before the ray enters the acces- 
sible region across the hm~x sphere. For inner points 
in each shell defined by the internal surface, the 
numbers i of inaccessible orders are also shown in 
Fig. 4(b). 

Fig. 3. The upper section of the volume of revolution for arbitrary 
D* and Amax but with zero Amin. The external surface Se is 
defined only by the D* sphere and the internal surface by the 
~'max sphere.  

Fig. 4(c) combines the nests of the external and 
internal surfaces. The multiplicities m for the sub- 
regions shown in Fig. 4(c) are obtained by subtracting 
the inaccessible multiplicities i of Fig. 4(b) from the 
multiplicities n of Fig. 4(a). 

We define V(n, m) as the volume of the subregion 
whose inner points generate rays with recorded multi- 
plicity m and maximum harmonic of order n. Sub- 
regions V(1,1); V(2,1), V(2,2); V(3,1), V(3,2), 
V(3, 3); . . .  are shown in Fig. 4(d). Only the volumes 
V(1, 1), V(2, 2), V(3, 3 ) , . . .  are in the experimentally 
accessible region of reciprocal space. For example, 
all rays with inner points in V(3, 3) emerge through 
the outer surface as triple rays. Inner points in V(3, 2) 
are outside the accessible region, but their second- 
and third-order points are accessible, so they generate 
double rays. Inner points in V(3, 1) are also outside 
the accessible region, as are their second-order points, 
so their rays emerge through Se as single rays. 

Our task is now to determine the volume V(n, m) 
of each subregion. It is known (Moitat et al., 1986) 
that the volume of a region of revolution bounded 
by spheres of radii d*, l/A2, l/A1, centred as in our 
problem, is ('n'/4) d*a(A2 - Al) for A2 < 2/D*. For each 
subregion in Fig. 4(d), the A boundaries are defined 
by A2 = (n - m + 1)Area x and Al = (n - m)Amax, SO that 
A2-A~ = Amax, which is independent of n and m. The 
volumes V(n, m) may then be obtained from the 
difference in volume between solids with the D*/n 
and D*/(n+ 1) spheres as their d* boundaries. If 
one defines the common factor (Tr/4)O*4Amax = C, 
the volumes 

V(1, 1) 

V(2, 1) 

V(3, 1) 

of the subregions are therefore 

= (1-1/24)C,  

= V(2,2)=(1/24-1/34)C, 

= V(3, 2) = V(3,3)=(1/34-1/44)C. 

The total volume of the accessible region is VR = 
(Tr/4)D*4Amax-- C, orindirectly VR = Y~, V( n, n)= C. 

The volume generating single rays is 

V(1) =~ V(n, 1) = C. 
rl 

Hence the proportion p(1) of RLPs which lie on 
single rays is 

p ( 1 ) -  - -  
V(1)Q V* 

V* V. 
- C Q / C = Q = 0 . 8 3 2 ,  

where Q is the probability of any RLP being an inner 
point (§ 2). 

The volume generating the inner points of double 
rays is 

V(2)= ~ V(n, 2)=C/24, 
n>-2 

so the proportion p(2) of RLPs which lie on double 
rays is 

p(2) = 2 V(2)Q/VR = Q/23 = 0"104. 
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In general the proportion p(m) of RLPs on m-tuple 
rays is 

p(m) = mV(m)Q/ V R ~ "  Q/m 3. 

The number of single rays is p (1)N = QN, and the 
total number of Laue reflections of rays of all multi- 
plicities is 

Y, [p(m) /m]N= QN(1 + 1/24+ 1/34+. . . )  
m 

=QNK(4)=O.904N, 

where N is the total number of RLPs in the accessible 

region and ~'(4)= 7r4/90. The multiplicity distribu- 
tions with respect to RLPs and rays are summarized 
in Table 2. A remarkable feature about these distribu- 
tions is that they do not depend on the values of D* 
and '~max (provided Amax< 2/D*). This is because all 
the ratios V(n, m)/VR are independent of D* and 
[max • 

In the present model the proportion of RLPs which 
lie on single rays is 83.2%, whereas in the solid-sphere 
model of § 3 the proportion was 72.8%. The higher 
proportion is due to the possibility of rays emerging 
across Se with multiplicities lower than the order of 

D" 

/ ~ 3 ~ D~4 ~ D~5 

P ~ " . 0  

Si;X=a~ 

(a) (b) 

ff 

1 

0 • 

(c) (d) 

Fig. 4. Derivation of the observed multiplicities for the z e r o  ~'min case. (a) The region defined by Se is divided into shells separated 
by segments of spheres of radii D*/2, D*/3 etc. as in Fig. 2. The numbers in each shell refer to the multiplicities n of rays having 
their inner points in that shell. (b) The internal surface Si defined by the Amax sphere generates a family of surfaces of radii 1/nAmax 
with n = 2, 3 , . . .  etc. The values shown are the number of inaccessible orders i for rays with inner points in each region. (c) This 
diagram combines the nests of the external and internal surfaces. The multiplicities m of the subregions are obtained by subtracting 
the inaccessible multiplicities i of (b) from the multiplicities n of (a). (d) This is identical to (c) but the subregions are now labelled 
with the appropriate volume labels V(n, m). 
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Table 2. Multiplicity distribution when Ami. = 0 and 
A,,,.x < 2 /D* 

Distribution of  RLPs Distribution of rays 

RLP on single rays 83.2% Single rays 92.4% 
RLP on double rays 10.4 Double rays 5.8 
RLP on triple rays 3.1 Triple rays 1.1 
RLP on quadruple rays 1.3 Quadruple rays 0.4 
RLP on higher-order rays 2.0 Higher-order rays 0.3 

100-0 100.0 

their highest harmonics, e.g. rays with inner points 
in V(n, 1) have (n - 1) inaccessible RLPs and emerge 
only as single rays. Since the total number of acces- 
sible RLPs here is N = (7r/4)D*4Amax/V*, the actual 
number of rays of a given multiplicity is dependent 
o n  Area x and V*, and very strongly dependent on D*. 

5. Model  for arbitrary D * ,  Am.,, and Amin 

The same principles can now be applied to the more 
general case of arbitrary Area x (where Amax<2/D *) 
and Amin. Again the boundary surface ofthe accessible 
region is divided into an external surface Se and an 
internal surface Si. Fig. 5(a) shows the nest of shells 
defined by the external surface. The external surface 
itself now has two segments, one from the D* sphere 
and one from the Ami n sphere. Its successive nesting 
inner surfaces Se2, Se3 , . . . ,  S , , , . . .  are each made of 
parts of spheres of radii D * / n  and 1/nAmi n. Apart 
from the changed shape of the nest of external sur- 
faces the approach is similar to the Ami, = 0 case (§ 4 
and Fig. 4). The nest of internal surfaces in Fig. 5(b) 
is unaltered, and Fig. 5(c) combines the nests of the 
external and internal surfaces. Again the multiplicities 

~ sej~mln I 

b (a) - q o  o 

0 ~ 10 
(c) (d) 

Fig. 5. Diagrams for the general case of  arbitrary D*, Ama x and Ami n. (a) The nest of  shells defined by the external surface with the 
values of  n shown in each region. (b) The nest of internal surfaces associated with Area X and the values of  the inaccessible multiplicities 
/. ~c) The multiplicities m of rays equal (n - i) and are the values labelling each region. (d) The subregions are labelled with their 
associated volumes V(n, m). 
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m of rays passing through RLPs in the accessible 
region are found by subtracting the inaccessible 
multiplicities i of Fig. 5(b) from the multiplicities n 
of Fig. 5(c). The subregions, Fig. 5(d), are labelled 
V(n, m) as before, where m denotes the recorded 
multiplicity of an emerging ray whose maximum har- 
monic is of order n. However, the formulae for the 
V(n, m) are now considerably more complicated 
because of the possible interleaving of the nAmi n and 
(n + 1)hmin spheres between the ~'max, 2Amax, • • • and 
n,~ma x spheres. 

Let M denote the ratio ,~tmax/}~.mi n. Fig. 6 illustrates 
a set of subregions V(n, 1), V(n, 2) , . . .  in more detail 
for arbitrary values of n and M. The nest boundaries 
Sen and Se(n+~) defined from the external surface are 
segments of the spheres D*/n and nAmin, and 
D*/(n + 1) and (n + 1)Amin. The relevant array of 
nests defined from the internal surface are parts of 
the spheres /~max, 2Amax, . . . ,  nAmax. Clearly if the 
)tmax sphere lies to the right of the n'~min sphere, 
V(n, n ) -  0. This occurs for n > M. More generally 
V(n, n - i ) = 0  when n>(i+l)M.  

For volumes represented on the left side of Fig. 6, 
V(n, m) retains the same formula as in the hmin = 0 
case, so long as the (n - m)hmax sphere lies to the left 
of the (n+l)Amin sphere, i.e. when ( n - m ) h m a x >  
(n + 1))Lmi n o r  (n - m)M > (n + 1). 

We are now ready for the general calculation of 
V(n, 1) and V(n, m) leading to formulae for p(1) and 
p(m). 

Single rays. If we put ( 'a ' /4)D*4Amin = K,  then from 
the discussion of Fig. 6 

V(n, 1 ) / K =  An,1/n 4-  B,,,1/(n+ 1) 4, 

where 

An,1 = n M -  max [ ( n -  1)M, n] 

B,,1 = n m - m a x  [(n - 1)M, min {(n + 1), nM}]. 

By reference to Fig. 6, we see that An,~ is related to 
the wavelength change along the upper segment from 

(n-1)x~,., 

Fig. 6. A set of subregions V(n, 1), V(n, 2) etc. of Fig. 5(d) is 
shown suitably expanded for clarity. 

the D*/n sphere, and Bn.1 is related to the wavelength 
change along the lower segment (if any) from the 
D*/(n + 1) sphere. 

On manipulation 

{ Mn( if M >_n/(n-1) 
An'l= M - l )  i fM<_n/(n-1) ,  

' M  if M ->(n+  1)/(n - 1) 

Bnt=  n ( M - 1 ) - I  i f ( n+l ) / (n -1 )  
• >_M>_(n+l)/n 

~0 if M <_(n+ l)/n. 

Evidently V(1 )=Zn  V(n, 1) is a series in 1/n 4. We 
therefore collect the terms in 1/n 4 f r o m  V ( n -  1, 1) 
and V(n, 1). The coefficient of 1In 4 in V(1)/K is 
then C,,~ = -Bn-~,~ + An,~ where 

0 if M>_n/(n-2) 
Cn, g = n - ( n - 2 ) M  i fn/(n-2)>_M>_n/(n-1)  

I n ( M - l )  if M<-n/(n-1) .  

The values of the first three coefficients are 

C1,1 = M - 1, 

2 i f M ~ 2  
C2'1= 2 ( M - 1 )  if M-<2,  

0 if M->3 

C3,1 = 3 - M  i f 3 > - M > - 3 / 2  

3 ( M - 1 )  if M-< 3/2. 

The volumes generating singles V(1) = 
K Y.,, C,,,m/n 4 are thus given by 

if M->3,  V(1) /K=(M-1) /14+2/2 4, 

i f 3 > _ M > 2 ,  V(1)/K = 

if2>_ M>_5/3,  V(1)/K= 

(M-1)/14+2/24 

+ ( 3 -  M)/34 , 

( M -  1 ) / 1 4 +  2 ( M -  1)/24 

+ ( 3 - M ) / 3 4  

+ ( 4 - 2 M ) / 4 4  

etc. Evidently the smaller is M the longer is the series. 
Since C, ,1=0 when M>>_n/(n-2), all Cn, l vanish 
when n >-2M/(M - 1). 

The total volume of the accessible region defined 
by the D*, Amax, '~min spheres is 

V R = ( , t r /4)D*4(Amax -/~min) ~- K ( M -  1). 

As previously, the proportion of RLPs which lie on 
single rays is 

p (1 )=  V(1)Q/VR, 

so that when M >- 3 

p(1) = [ ( M -  1)+ 1/23]Q/(M - 1). 

When M ~ 0% p(1) ~ Q = 0.832 in agreement with the 
earlier treatment for Amin = 0 (§ 4). 
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The behaviour of p(1) as a function of M =  
,~.max/,~min is shown in Fig. 7. A very important point 
to notice is that p(1) does not depend on D* (pro- 
vided hmax<2/D*); it depends only on M. p(1) rises 
from 83.2% at large M to 88.4% at M = 3, to 94.6% 
at M =2, to 97.4% at M = 1.5, and tends to 100% 
as M tends towards 1.0. Note that there are discon- 
tinuities in the slope of the curve at M = 3, 2, 5/3, 
3/2, 7/5, 4 / 3 , . . . .  The slope discontinuity is 
especially marked at M = 2, as can be appreciated 
from the expressions for V(1) given above. 

A further comment may be made about the case 
when the incident radiation has a narrow wavelength 
range with M < 2. It follows directly from the ratio 
of  hma x to '~'min and the ratio of the reciprocal radii 
of successive orders along a ray that any accessible 
RLP of order less than 1/(M - 1) will lie on a single 
ray. Thus if, say, M = 1.9, all accessible first-order 
RLPs will lie on single rays. If M -- 1.45 all accessible 
second- and first-order RLPs will lie on single rays, 
and if, say, M = 1.09 all accessible RLPs of order 11 
or less will lie on single rays. 

Multiple rays. A similar examination of diagrams 
like Fig. 6 leads for the volumes generating the inner 
points of m-tuple rays to the results 

V(n, m)/ K = An, m~ YI4-- B,,~/(n + 1) 4, 

where 

A,,,,, = ( n - m + l ) M  

- m a x  [(n - re)M, min {n, (n - m + 1)M}], 

B , • ~ = ( n - m + l ) M  

- m a x  [ ( n -  m)M, min {(n+ 1), 

( n - m + l ) M } ] .  

V(m)=~,_>,, V(n, m) is a series in 1/n 4, and we 
collect the terms in 1/n 4 from V(n-1 ,  m) and 
V(n, m). The contributions -B,_~•~ and An, m tO the 
coefficients Cn,,, of 1 / r l  4 in V(m)/K for various 
ranges of value of M are set out in Table 3. As 
particular examples 

c~,~={O-2 if M>_2 

if M<-2, 

t 
'0 if M->5 

C53= 5 - M  i f 5 -  M - 5 / 2  
• 3 M - 5  if 5/2 >- M >- 5/3 

0 if M ~ 5/3. 

The volumes generating doubles are thus 

if M - 4  V(2 ) /K=(M-2 ) /24+3 /3  ", 

i f 4 - M - - - 3  V(2) /K=(M-2) /24+3/34  

+ ( 4 -  M)/44 , 

if3_> M>_5/2 V ( 2 ) / K = ( M - 2 ) / 2 4  

+ ( 2 M - 3 ) / 3 4  

+ ( 4 -  M ) / 4 4  

etc. The volumes generating triples are 

if M->5 V(3) /K=(M-3) /34+4/44,  

i f 5 > _ M _ 4  V(3) /K=(M-3) /34+4/44  

+ ( 5 - -  M ) / 5 4  , 

i f 4 > _ M _ 3  V ( 3 ) / K = ( M - 3 ) / 3 4 + ( 2 M - 4 ) / 4 4  

+ ( 5 -  M)/5", 

i f 3 - > M _ 5 / 2  V ( 3 ) / K = ( 2 M - 4 ) / 4 4 + ( 5 - M ) / 5 4  

+ ( 6 - 2 M ) / 6 4  

etc. Again, the smaller is M, the longer is the series. 
From Table 3, C,,,, =0  for M > - n / ( n - m - 1 ) ,  so 

that all C,.~ vanish for n > _ ( m + l ) M / ( M - l ) .  
However (2,.,, = 0 also for M <- n/(n - m + 1), so that 
early terms in the series when m -> 2 also drop out as 
M decreases. 

The proportion of RLPs which lie on m-tuple rays 
is 

p(m)=mV(m)Q/VR,  

where VR = K ( M -  1). Curves for p(2) and p(3) as 
functions of M are also shown in Fig. 7. p(2) falls 
slowly from 10.4% at large M (hm~. = 0) to 8.6% at 
M = 3, and then rapidly to 3.6% at M = 2, to 1.8% 
at M = 3/2 and towards zero as M tends to 1.0. p(2) 
has slope discontinuities at M = 4, 3, 5/2, 2, 7 / 4 , . . . .  
p(3) falls from 3.1% at large M to 2-5% at M =4, 
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Fig. 7. The variation with M of the proportions p(1), p(2) and 
p(3) of RLPs lying on single, double and triple rays. The value 
of '~max < 2/D*. The points marked • are the results from com- 
puter simulations; the parameters for these were D*ax = 
,(2.5 ,~)-~, cubic space group, 50/~ primitive cell in a general 
orientation, spindle 15 °, Cx = 5, ¢~ = -28,  (#~ = -80.2  °. The crys- 
tal-to-film distance was +2 mm (for h m ~ < 2 / x / 2 D *  ) but for 
2 /x /2D*< ; tm~x<2/D* two simulations were added together 
(forward- and backscattering) to give an almost complete count 
of rays. 
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Table 3. Coefficients o f  1 / n  4 contributing to V ( m ) / K  

-B._t.m - M  
A,.m M 
C,.m = -B,-t,m - A,.m 0 

/ I  /1 /1 /1 /1 
M > - -  - - > M > - -  - - > M > - -  M < - -  

n - m - 1  n - m - 1  n - m  n - m  n - m + l  n - m + l  
-(n-m)M+n 0 0 

M (n -m+l )M-n  0 
n - ( n - m - 1 ) M  (n -m+l )M-n  0 

to 1.4% at M = 3  and to 0.4% at M = 3 / 2 .  It has 
slope discontinuities at M = 5, 4, 3, 5/2, 7 / 3 , . . . .  

6. Model  for AmxO>2/D * 

All previous sections assumed that '~'max < 2 / D *  or, 
equivalently, that the maximum scattering angle 20 
was less than zr. For macromolecular crystals this is 
an experimentally reasonable assumption. Even the 
most_highly ordered protein crystals have D*_< 
1.0 A ' .  However, for crystals of inorganic and small 
organic molecules, larger values of D* are common. 
Although all Lave synchrotron experiments to date 
have used values of hm~x--< 2"6/~, future experiments 
may require substantially larger values of hmax, for 
example to stimulate the K edges of calcium or sulfur 
at 3 and 5 A respectively. Thus, for completeness, we 
now relax the prior condition that hmax < 2 /D* ,  and 
further assume that data for all scattering angles, 
0 < 20 - or, are recorded by the detector. 

The situation is shown in Fig. 8, which is directly 
modelled on Fig. 4 and with which it should be 
compared. The subregions V(n,  m)  in Fig. 8 again 
are those for which an emerging ray is of multiplicity 
m, with a maximum harmonic of order n. The volumes 
of these subregions may be calculated analytically, 
to yield as before the fraction of all rays of multiplicity 
rn. Rather than present the analytical results we show 
in Fig. 9 the results of an extensive computer simula- 
tion, in which hmax was varied between 5/~ (i.e. 2/D*)  

V(1 ,11  

Fig. 8. The multiplicities for the case when Am,x>2/D*. This 
diagram is modelled on Fig. 4. As previously, V(n, m) is the 
volume of the subregion whose inner points generate rays with 
recorded multiplicity m and maximum harmonic of order n. 

and 100 A, for /~min values of 0.025, 0.5 and 1.0 A. 
For Area x = 5 /~ ,  the three data points agree with the 
corresponding points of Fig. 7 and, in particular, the 
proportion of single reflections for hmin=0"025/~ 
(which is effectively 0/~) is 83.2%, the analytical 
result (§ 4). For the largest values of }tmax, the propor- 
tion of singles is 73.2% for all values of Amin, the 
analytical result for infinite wavelength range (§ 3). 
The computer-simulated curves between these two 
limiting proportions appear smooth; the discon- 
tinuities in slope which the analytical treatment shows 
to be present are so slight as to be undetectable, in 
contrast with the case when hmax < 2 / D *  shown in 
Fig. 7. Note that here there is a different curve for 
each value of Ami n. That is, the proportion of singles 
now depends on two variables separately, Amax D *  
and hmi,D*, and not merely on the single variable 
,~max/,~min, as in the case when Amax<2/D*. 

7. Total  number of  s ingle and double reflections 

Figs. 7 and 9 show that, as the wavelength range 
increases, the fraction of single reflections decreases 
monotonically. However, an increase in the 
wavelength range results in an exactly proportional 
increase in the total number of reciprocal-lattice 
points that are stimulated (Moffat et al., 1986), pro- 
vided )kma x < 2 / D * .  The  total number of single reflec- 
tions, and of doubles and higher multiples, may then 
increase also. With present experimental methods, 
quantification of structure amplitudes from Lave 
reflections is sufficiently precise for single and double 
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Fig. 9. Model for Amax>2/D*. The variation of the proportion 
p(1) of singles with Amax for three different values of Ami.- For 
Am= = 5 A the three data points shown agree with the points on 
the curve in Fig. 7 (M values of 5, 10, 200). (The simulation 
parameters are as given in the caption to Fig. 7.) 
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reflections (Zurek et al., 1985), but not so for triple 
and higher multiples. The total number of quantifiable 
structure amplitudes from a Laue data set is then the 
total number of singles, or of singles plus doubles. 

Fig. 10 shows the form of the variation of the total 
number of all reflections, the total number of singles, 
and the total number of doubles, as a function of 
Arnax for fixed D*. The total number of all reflections 
NT is given by 

NT = "n'D*4(Amax - Amin)/4 V* for Amax < 2 /D*  

and 
Nr  = 7rD'3(8 - 3Am~,O*)/12 V* -4~r/3A3~x V* 

for Amax > 2/D*, 

which tends to the constant value 

N T = 7 r D ' 3 ( 8  - 3 A m i n D * ) / 1 2  V* 

a s  Ama x becomes large. 
The curve for the total number of singles has four 

sections. For Am~x--> 6/D*, the number of singles is 
constant and given by 7QD*3/12V * (for Ami,=0). 
For 2/D* <- Amax < 6/D*, the curve passes through a 
broad shallow maximum at Amax=3"4/D *. For 
3Amin ~ '~max < 2/D*, the curve is exactly linear with 
a slope $1 of rrD*4Q/4V * and an intercept on the 
/~-max axis of 7/8Amin. For Amen< hmax ~3Amin, the 
curve is an array of linear segments with discon- 
tinuities of slope at Amax=3Amin, 2Amin, 5/3Am~., 
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(c) 
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Fig. 10. The variation of the numbers of RLPs as a function of 
Amax. (a) Total nu~mber of all reflections; (b) total number of 
singles; (c) total nu~nber of RLPs lying on double rays. (hmi, = 
0"5 A, other simulation parameters as given in the caption to 
Fig. 7.) 

3/2hmin,. • . ,  corresponding to the points of discon- 
tinuity in Fig. 7. Although the slope of each segment 
differs (and may be readily calculated from the 
equations in § 5), the segments do not deviate appreci- 
ably from the line of slope $1. For most practical 
purposes the curve may be approximated as linear 
for '~min </~'max < 2/D*. That is, the total number of 
single reflections, like the total number of all reflec- 
tions, is proportional to the wavelength range (Amax-- 
'~min) for '~max < 2/D*.  

The curve for the total number of doubles has a 
broadly similar form. Linear segments extend up to 
hmax = 2 /D* ,  followed by a broad shallow maximum 
at '~'max "" 5 / D *  and a constant region for/~max ~ 8/D*.  
Again, for most practical purposes the curve may be 
approximated as linear for Amin < )[max < 2 / D * .  T h u s  

the curve for singles plus doubles may also be 
approximated as linear over this range. 

8. Dependence of the distributions on d* and 0 

8.1. Mosaics 

The previous sections have presented results for 
the total numbers and proportions of rays which are 
singles, doubles etc. We now wish to find as a function 
of position in VR the probability distributions for 
RLPs lying on single, double, triple etc. rays. For 
simplicity we consider only cases with hmax < 2 /D*,  
and thus return to the analysis of § 5. 

To find these probability distributions we combine 
two ideas introduced above: the V(n, m) are the 
regions whose first-order points generate rays with 
maximum order n and multiplicity m within VR (§ 4); 
and in any region of reciprocal space the probability 
of a randomly chosen RLP being a first-order point 
is Q (= 0.832), of being a second-order point is Q/23 
(=0-104), of being a third-order point is Q/33 
(=0.031) etc. (§ 3). 

For given n, m the rays generated from first-order 
points in V(n, m) have their j th-order points in a 
region U(n, m,j) obtained by a linear scaling of 
V(n, m) outwards from the origin by a factor j. The 
ratio of volumes is U(n, re, j)=j3V(n, m). For a j t h -  
order point to lie in the accessible region VR, j must 
satisfy (n -- m + 1 ) - - j - -  n. With this restriction on j 
all the U(n, re, j) lie within VR. 

For every order j, we can partition VR into a mosaic, 
made up of a series of regions U(n, m,j), such that 
a RLP of order j lying within the region has its first 
order lying within V(n, m). In the case discussed in 
§ 5, V R is bounded by the D*, hma x and '~min spheres. 
For givenj the corresponding set of first-order regions 
V(n, m) is bounded by the D*/j, jhmax and j '~min 

spheres. 
The process may be understood by an example. 

For specified D*, hmax and Amin, with say M - 4, we 
draw the V( n, m) regions as in Fig. 11 (a). The integers 
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within  the  b o u n d a r i e s  show the mult ipl ic i ty  m associ-  
a ted  with  each  region.  The f irs t-order  points  wi th in  
VR are then  ca tegor ized  direct ly by  the V(n, m)  since 
U(n, m, 1 ) =  V(n, m). Howeve r ,  only the V(n, n)= 
U(n, n, 1) lie wi th in  VR, so the d is t r ibut ion o f  mult i -  
plicities a s soc ia ted  with  f i rs t-order  points  shown  in 
Fig. l l ( b )  is s imply  a copy  o f  par t  o f  Fig. l l ( a ) .  

The mul t ip l ic i ty  classif icat ion of  s e c o n d - o r d e r  
points  wi th in  VR is ob t a ined  f rom Fig. 11 ( a )  by t ak ing  
the  V(n, m) within  the region b o u n d e d  by  the  D*/2, 
2Amax a n d  2Amin spheres ,  and  scal ing up  the  d i a g r a m  
by a fac tor  two to ob ta in  the  U(n, m, 2). The  resul t ing 
mosa ic  is s h o w n  in Fig. 1 l ( c ) .  A n y  second-o rde r  R L P  
lying, say, in the  region U(4,  3, 2) be longs  to a ray 

U(3,3,1) 4 

(b) 

I 

0 

(a) 

~ 3,3,31 

, 3 ,2 )  ~ 4 , 4 , 3 )  

(c) (d) 

2Xn,../3..,~.... 0"94 " .  \ X.,. o 

.13 
0 

~, i 0 "83"~,1 

4 mn  

(e) (f)  (g) 

Fig. 11. Dependence of the distributions on d* and 0. (The value of M used in the diagrams lies in the range 4< M < 5, which is a 
reasonable general case.) (a) The V(n, m) regions with their multiplicities shown. (b) The Q mosaic or distribution of multiplicities 
associated with first-order points within Va [i.e. the U(n, n, 1)]. This is a copy of part of (a). (c) The Q/23 mosaic or multiplicity 
classification of second-order points within Va [i.e. the U(n, m, 2)]. Note that the region of interest from (a) between D*/2, 2Amax 
and 2Xmin has been scaled up by a factor of two here. (d) The Q/33 mosaic or multiplicity classification of third-order points within 
VR [i.e. the U(n, m, 3)]. The appropriate part of (a) has been scaled up by a factor of three here. (e) The probability distribution 
for singles is obtained by superposing the appropriate regions of (b), (c), (d). The probability of a RLP being single is marked for 
each new region. For clarity the successive overlap of regions into the top left-hand cSrner of Va has been omitted. (f) The probability 
distribution for doubles is obtained by selecting the regions of multiplicity 2 from (b), (c), (d). For clarity only the five most important 
regions have been selected. The probabilities which result are marked. (g) The probability distribution for triples is built up in the 
same way as for the singles and doubles in (e), (f). The region of highest probability is U(3, 3, 1). For clarity only a few of the triple 
regions are ~hown. 
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of multiplicity 3 as indicated in the figure. Fig. 11 (d) 
shows the multiplicity classification of third-order 
points obtained by enlarging the appropriate part of 
Fig. l l ( a )  by a factor three. Higher-order mosaics 
may be similarly obtained. 

8.2. Probability distributions 

We now turn to probability distributions, and find 
first how the probability that a randomly selected 
RLP lies on a single ray varies with position inside VR. 

The probability that a randomly chosen RLP is first 
order is Q. Thus the first-order mosaic, Fig. l l (b ) ,  
may be called the Q mosaic. Its partitions show the 
multiplicities of the rays associated with first-order 
RLPs in the different regions. Likewise, the second- 
order mosaic, Fig. 1 l(c),  with probability Q/23 for a 
second-order point, may be called the Q/23 mosaic, 
and its partitions show the multiplicities of rays 
associated with second-order RLPs in the different 
regions. Similarly, the Q/j3 mosaic would show 
multiplicities associated with j th-order points. 

In the Q mosaic first-order points will be singles 
only when the RLP is in the region U(1, 1, 1); else- 
where the probability of a first-order RLP lying on a 
single ray will be zero. In the Q/23 mosaic second- 
order points will lie on single rays only when the RLP 
is in the region U(2, 1, 2). Thus the probability distri- 
bution for singles can be obtained by superimposing 
U(1, 1, 1) with probability Q, U(2, 1, 2) with proba- 
bility Q/23, U(3, 1, 3) with probability Q/33 etc. The 
result of this superposition is shown in Fig. l l (e) .  

The diagram has a particularly simple form, since 
as n increases each U(n, 1, n) covers a smaller part 
of VR than its predecessor, and they all reach into 
the top left-hand corner. Thus the probability distri- 
bution is built up from a series of layers with probabil- 
ity weights Q/j3. Since Q(1 + 1/23+ 1 /33+ . . . )  = 1, 
the probability of a RLP lying on a single ray is very 
nearly 1 for any RLP selected near to the top left-hand 
comer of VR. The probability reduces gradually to 
Q(1 + 1/23) = 0.936 in the region with (3/4)D* > 
d*>(2/3)D* and ( 2 / 3 ) A m a x > A > ( l / 2 ) A m a  x. The 
probability is Q = 0.832 in the large region unique to 
U(1, 1, 1), but it falls to zero in the region where 
d* < D*/2 and A > 2,~.mi n. In this region there are no 
RLPs which lie on single rays. 

The set of diagrams in Fig. 11 has been drawn for 
4<_ M <_ 5. The general features of the singles distribu- 
tion shown in Fig. l l ( e )  are correct also for M_>3. 
For 2 <- M <-3 U(2, 1, 2) acquires a tail through low 
d* stretching to the origin, as shown in Fig. 12. For 
M<-2,  U(1, 1, 1) fills the accessible volume VR, and 
other U(n, 1, n) also acquire tails. 

The probability distribution for doubles, that is the 
probability that a randomly chosen RLP lies on a 
double ray, is obtained by selecting the regions of 
multiplicity 2 from the Q, Q/23, Q/33 etc. mosaics 

(Figs. l lb ,  c, d). The resulting diagram for doubles 
does not have the visual simplicity of that for singles 
because the U(n, 2,j) regions only partly overlap. 
For clarity only the five most important regions are 
shown in Fig. 11 (f) ,  viz U(2, 2, 1) from the Q mosaic, 
U(2, 2, 2) and U(3, 2, 2) from the Q/23 mosaic and 
U(3, 2,3) and U(4,2 ,3)  from the Q/33 mosaic. 
U(2, 2, 1), the highest-probability region, is not over- 
lapped by any of the others, but there is partial overlap 
of U(3, 2, 2) and U(4, 2, 3) and of U(2, 2, 2) and 
U(3, 2, 3). As n increases the regions U(n, 2, n - 1) 
and U(n, 2, n) diminish in probability, and their posi- 
tions and partial overlaps are such that the probability 
of a random RLP lying on a double ray diminishes 
to zero near the (D*, Amax) left-hand top corner, as 
it must for consistency with the high probability there 
for singles. 

The general features of Fig. 11 ( f )  are correct for 
M - 4 .  For M<-4,  first U(3,2 ,2)  and U(3 ,2 ,3)  
acquire tails stretching to the origin, and then also 
other U(n, 2,j)  as M further decreases. 

The most important parts of the probability distri- 
bution for triples derived from Figs. l l (b ) ,  (c) and 
(d) are shown in Fig. l l (g ) .  The region of highest- 
probability Q is U(3, 3, 1). 

8.3. Combined distributions and coverage 

For the accurate measurement of X-ray intensities 
we are particularly concerned with single and double 
rays (and perhaps with triple rays as techniques 
improve). We need to know the extent to which their 
combined distributions provide a good coverage or 
sampling of the RLPs within VR. 

Since Q = 0.832, Q/23 = 0.104 and Q/33 = 0.031, it 
is clearly important to have good coverage of the 
first-order points in the Q mosaic. Singles provide 
sampling of the U(1, 1, 1) region, but as remarked 
earlier there are no singles when M > 2 in the region 

Fig. 12. For 2 < M < 3 the region U(2, 1, 2) acquires a tail through 
low d* stretching to the origin. This should be contrasted with 
the shape of U(2, 1, 2) in Fig. ll(e) for 4< M < 5. 
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Table 4. Percentage coverage of RLPs as a function of M = A,,ax/A,,i, 

Full range d* <- D* d* <- D* /2  d* <- D* /3  

Singles + Singles + Singles + 
M Singles doubles  Singles doubles  doubles  

°o(hmin = 0) 83"2% 93"6% 0 66"8% 0 
5 85"8 95" 1 20"8 76"3 42"9 
3 88"4 97"0 41 "6 88"9 88"9 
2 94"6 98"2 88"4 96"0 96"0 

Table 5. Numbers of RLPs as a function of M = hmax/A,m,, 

The calculat ions assume D* = 0 . 5 / ~ - ~  with 10000 RLPs in hemisphere.  For  M =oo,  Amax=2.5 A and Ami n =0 .  For  M =  5, 3, 2, 

Arnin = 0"5/~. 

Full range d* <- D* d* <- D* /2  d* <- D*/3  

Singles Max. Singles Max. Singles Max. 
M Singles + doubles accessible Singles + doubles  accessible + doubles  accessible 

cO 3899 4387 4687 0 195 292 0 57 
5 3217 3567 3750 48 178 234 19 46 
3 1657 1818 1875 48 104 117 20 23 
2 887 921 937 51 56 58 11 11 

(Hemisphere) - -  - -  (10000) - -  - -  (1250) - -  (370) 

where d* < D*/2 and A > 2Ami n . When 2 < M < 3 this 
gap in the Q mosaic can be covered completely by 
the U(2, 2, 1) inner RLPs of double rays, and when 
3 < M < 4  by adding the U(3,3,1)  inner RLPs of 
triple rays. 

The second-order singles from U(2, 1, 2) cover a 
substantial part of the Q/23 mosaic, and they can be 
supplemented by the U(3, 2, 2) and U(2, 2, 2) RLPs 
from double rays. As just implied the fractional 
coverage of singles is low when M > 2 in the region 
with d * <  D*/2; similarly, the coverage of doubles 
is low when M > 3 in the region with d* < D*/3. We 
present in Table 4, for different M, statistics on the 
percentage coverage by singles, and by singles plus 
doubles. Values are given both for the d* <- D overall 
coverage of Vn (corresponding to the points in Fig. 
7) and for coverage below D*/2 and D*/3. 

At M - - 2 ,  the Q mosaic is entirely covered by 
U(1, 1, 1) and the percentage of singles in the region 
with d* < D*/2 is high at 88.4% [the tail of U(2, 1, 2) 
also contributes]. For larger M and d * <  D*/2, the 
percentage of singles decreases fairly rapidly as M 
increases. At M = 3  the Q mosaic is covered by 
U(1, 1, 1) and U(2,2, 1), and the percentage of 
singles plus doubles is high in the region with d * <  
D*/3, but it decreases for larger M. 

Table 5 presents information about numbers in 
place of percentages. It will be recalled that the total 
number of RLPs in VR is proportional to 

D * 4 ( h m a x  - )~min)--  D * 4 (  M -  1)/~min" 

For given D*, the regions d* < D*/2 and d* < D*/3 
contain only 1/16 and 1/81 of the total RLPs in VR. 
TO illustrate these aspects Table 5 shows the numbers 

of RLPs for different M assuming tha ta  hemisphere 
of radius D* = 0.5 A -1 (dmin = 2"0/1) contains 10 000 
RLPs. The calculations assume that the M = oo case 
corresponds to Area x = 2"5  ~ and Amin ----" 0 ,  and that the 
M = 5, 3, 2 cases correspond to hmax = 2"5, 1 "5, 1"0 A, 
respectively, with hmi~ constant at 0.5 A. 

Though higher percentages are obtained with 
smaller values of M, the dominant feature of Table 
5, as implied in § 7, is that the various totals for the 
full range d*<_ D depend mainly o n  ( A m a x - h m i n ) .  

The numbers of accessible RLPs in the region with 
d* < D*/2 are relatively small, but coverage there is 
much improved for large M when doubles as well as 
singles can be measured. Indeed, when M is large, 
measurement of triples would be helpful. Thus, when 
M - -  5, the number of measurable RLPs for the full 
range of d* -< D* would rise from 3567 in Table 5 to 
3661, and in the d* < D*/3 range the number would 
rise from 19 to 35. In the limit of M--oo, the total 
would rise from 4387 to 4531, and in the d*< D*/3 
range the number would rise from 0 to 32. 

9. The effect of a limited angular aperture 

Previously we have assumed that all diffracted beams 
could intercept the detector (film). This is valid if 

Oac¢ > -- sin-l( D* hmax/ 2) = 0ma x . 

However, the angular acceptance will often be less 
than this, for example in an effort to reduce spatial 
overlap of spots (Greenhough & HelliweU, 1983; 
Helliwell, 1985). We shall refer to the effect as the 
0-cut effect. The beams not intercepting the detector 
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obviously have a Bragg angle 0 satisfying the 
inequality 

0ma x >  0 >  0ac c.  

In this section we ignore angular restrictions at low 
angle. In the X-ray case these may arise because of 
the direct-beam stop, but the size of the effect is very 
small. 

Moreover, we assume that the detector is placed 
symmetrically with regard to the incident beam. 
Therefore, our analysis would not apply directly to 
the neutron time-of-flight method where the detector 
is placed off axis, nor would it apply to the X-ray 
case if the film is placed asymmetrically. 

9.1. The multiplicity distribution 

We know from § 8, Fig. l l (e ) ,  that the probability 
of a ray being single increases from 0.832 to 1-0 as 
0--> 0m~x and d*--> D* (from D*/2). Hence, the rays 
excluded by a restricted detector aperture are pre- 
dominantly single rays, which, along with doubles, 
are the ones that can be accurately measured. 

Whereas the single rays are considerably affected 
as soon as 0~cc---0max, the same is not true of the 
double rays. The double rays contain RLPs in the 
regions U(2, 2, 1), U(2, 2, 2), U(3, 2, 2), U(3, 2, 3) 
etc. to U(n, 2, n), U(n, 2, n -  1). As 0ac~ is reduced 
the 0 cut affects the nth regions first (Fig. 13) then 
the ( n - 1 ) t h  etc., and finally the U(2,2, 1) and 
U(2, 2, 2) regions. For the nth regions the 0 cut-off 
begins to impinge at a 0,,2 of 

On,2= sin -1 [ D* Amax(n - 1)/2n]. 

The regions which contribute the most RLPs to the 
measured pattern, via double rays, are those with 
small n, i.e. U(2, 2, 1), U(2, 2, 2), U(3, 2, 2) and 

04,3 

/ \  032 ~ o*_1--x 

• \ ~mm 

• • 

-o* 

Fig. 13. The effect of a 0 cut. Those stimulated beams which pass 
through the RLPs in the cross-hatched region do not intercept 
the detector. The diagram shows the positions of some key values 
of 0 (e.g. 0max; 03.2; 02.2 = 04.3) which delineate regions associ- 
ated with the singles, doubles and triples. An arbitrary position 
of Oac¢ is shown as well as 0 = 0 °. 

U(3, 2, 3). Hence, if 

0ac c ~ 0 3 , 2 ( > 0 2 , 2 )  

then the bulk of the double rays will be measured. 
Similar considerations apply for the triple and 

higher m-tuple rays. The general version of the 
equation given earlier for doubles but now written 
for m-tuples is 

0,,~ = sin -I [D*Amax(n - m + 1)/2n]. 

The above statements regarding single, double and 
triple rays hold for M _  3. For n-> M or M -  3 the 
0-cut effect is more complicated to visualize. 
However, for M_< 3 the multiplicity distribution is 
then dominated by single rays; indeed for 1 < M < 2 
the rays involved are nearly all single. A 0-cut effect 
would not change the multiplicity distribution greatly 
in this case, although single rays would obviously be 
lost. 

It should be noted that since any 0-cut line is a 
straight line from the origin the 0-cut effect never 
changes the multiplicity of a ray (other than to elimi- 
nate it completely). 

9.2. Overall volume lost 

The overall volume VR of stimulated reciprocal 
space is that lying between the D*, Area x and Am~, 
spheres, with VR = ( T r / 4 ) D * 4 ( A m a x -  Amin). 

The 0-cut effect causes a volume V- to be sliced 
off VR (see Fig. 13). It can be shown that 

V- = ( Tr/ 4)D*4Amax(1-4tx/3 + /x 4/3), 

where /x = (sin 0ace/sin 0m~x)- The parameter /J, will 
be used later to characterize the relative magnitude 
of the 0-cut effect in a given experimental situation 
(see §9.3). The fraction of RLPs which are not 
measured is 

V - /  VR = [ M /  ( M -  1)](1-4br/3 +/~4/3). 

For/,~ < 1 the lost volume is at high d*. The region 
of stimulated reciprocal space for d * <  D*/2  is not 
affected by a 0 cut until 0~cc < 02.2. Hence, the percen- 
tage coverage detailed in Table 4 below D*/2  is not 
affected in most realistic experimental situations. 

9.3. Examples and results 

To illustrate the 0-cut effect we take one of the pea 
lectin Laue patterns detailed by Helliwell (1985). The 
value of the parameter/z for this pattern is 0.55. The 
experimental parameters were D*=(1 /2 .6 )  A-~, 
Ami n = 0-45 and Amax = 2-6/~ (M = 5-78), film radius 
59"3 mm and crystal-to-film distance 95 mm - see also 
the notes to Table 6. 

Table 6 contains histograms, for different 0 cuts 
(0.29</z < 1.0), showing the number of recorded 
RLPs as a function of wavelength. The entry for 
/z=0.55 corresponds exactly to Table 2(a) in 
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Helliwell (1985). The entry for/z = 1.0 shows, within 
statistical variations, a constant number of RLPs per 
unit wavelength interval as expected and a total which 
is the total number of stimulated RLPs. As /z 
decreases from 1.0 the longer wavelength bins show 
a decrease in the number of recorded RLPs. At/z  = 
0.55, 36% of the total RLPs are lost. 

Table 7 shows the multiplicity distributions of the 
recorded Laue rays corresponding to the entries in 
Table 6. The entry for/x = 0.55 in Table 7 is slightly 
different from the equivalent entry in Table 2(b) of 
Helliwell (1985) owing to an improved method of 
computer simulation. The simulation for/z = 0.69 was 
chosen to illustrate the important point that as p. 
decreases from 1 a considerable reduction in the 
number of singles occurs before the rest of the distri- 
bution is affected. This is because 0acc=20"l ° is 
greater than 03,2-- 19.5 or 02,2-- 14"5 °. For the triple 
rays 04,3 = 14.5 and 03,3 = 9"6 ° and the region associ- 
ated with V(3, 3) is much larger than V(4, 3). Hence 
it is not until the/z = 0.29 column in Table 7 that the 
number of triple rays is affected significantly. At/x -- 
0.29 only 2742 single rays are recorded out of the 
12 630 stimulated. 

It is clear from these results that the detector should 
be close enough and/or  big enough to accept all 0 
values up to 0max (/Z = 1"0) to avoid loss of important 
single rays. However, a short crystal-to-detector d~s- 
tance leads to decreased spatial separation of spots 
and obviously the recorded pattern should not be so 
dense that spatial overlap of spots leads to the 
effective loss of many RLPs. A future paper will deal 
with the optimization of the detector arrangement 
taking account of the theory presented here but also 
dealing with the spatial-overlap effect. 

10. Discussion and concluding remarks 

10.1. Comparison between theory, computer simulation 
and experiment 

The only direct experimental method in the X-ray 
case of determining the number of orders m that 
contribute to a Laue reflection is to examine each 
Laue reflection with an energy-sensitive detector. This 
is barely feasible for proteins. However, indirect 
methods exist which depend on the indexing of the 
Laue diffraction pattern; that is, identifying the ray 
h, k, l associated with each Laue reflection. The 
number of orders m contributing to each reflection 
may then be simply calculated for preliminary experi- 
mental estimates of D*, Area x and Ami n. These param- 
eters, together with the unit-cell parameters and crys- 
tal orientation, may be further refined to yield more 
precise values of m for each reflection. The correct- 
ness of the indexing, and hence of the values of m, 
may be checked internally, for example by com- 
parison of the intensities of symmetry-related rays, 

or of observed with calculated intensities (Wood 
et al., 1983; Machin & Harding, 1985; Campbell, 
Habash, Helliwell & Moffat, 1986). 

Histograms may be calculated which describe the 
number and proportion of Laue reflections, and of 
reciprocal-lattice points, that are single, double, triple 
and so on (Elder, 1984). Such histograms form the 
data against which we have tested our theory. Some 
are based on the indexing and refinement of Laue 
photographs obtained from protein crystals of known 
structure: pea lectin, phosphorylase b and hen egg 
white lysozyme; others are obtained from computer- 
simulated Laue patterns from crystals with primitive 
and non-primitive lattices, with a variety of space 
groups, cell dimensions, crystal orientations and 
maximum resolutions, and with several wavelength 
ranges and detector acceptance angles. 

Since each experimental Laue photograph yields 
only a limited number of parameters (for example, 
the proportion of reflections that are single, double, 
triple, quadruple and greater than quadruple), a full 
test of our theory has required extensive reliance on 
computer-simulated data. We emphasize that the 
simulations in no way depend on or utilize the multi- 
plicity of Laue reflections; rather, multiplicities are 
derived results. Secondly, in all cases so far examined, 
the simulations accurately reproduce experimental 
data, in both the location of the Laue reflections and 
their structure amplitudes. 

The agreement between our theory and the experi- 
mental or computer-simulated results is shown in 
Figs. 7 and 9, where the curves are obtained from 
theory and the points are experimental or computer 
.~imulated. Agreement is very satisfactory. The scatter 
of points about the lines may be accounted for by 
the fact that the theory deals with volumes, which 
are then related to numbers of points via the 
reciprocal-cell volume "v ~'~ (§ 2). Fluctuations in the 
number of points will occur that depend on the exact 
crystal orientation, and will be proportionately larger, 
the smaller the number of points. Deviations between 
our theory and experiment appear to be of this quasi- 
random nature, rather than systematic. 

As noted in § 2, our theory is based on primitive 
lattices. At first sight, it might appear that the theory 
would require modification to apply to face-centred 
or body-centred lattices, where the relations between 
h, k and I may lead to the systematic absence of, say, 
all odd-order reflections. Such is not the case; one 
theory encompasses both primitive and non-primitive 
lattices. We note that indexing on a non-primitive 
lattice is a convention for mathematical convenience, 
which has no physical interaction with or effect on 
the diffraction pattern; all lattices can be indexed as 
primitive. Indeed, computer simulation of Laue 
diffraction patterns from a cubic lattice of constant 
cell dimension led to the same proportion of multiple 
reflections if the lattice were primitive, face-centred 
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T a b l e  6. Distribution of  recorded RLPs in each wavelength interval as a function of  Oacc 

oac~ (°) 30 20.1 16.0 12.7 8.2 

Maximum A Crystal-to-film 
in each bin distance (mm) 34 70 95 125 200 

(~)  ~ 1.0 0.69 0.55 0.44 0.29 

0"593 1018 1018 1018 1018 1018 
0"737 970 970 970 970 970 
0"880 977 977 977 977 729 
1"023 996 996 996 996 386 
1"167 973 973 973 970 ~ 213 
1"310 1001 1001 1001 731 137 
1.453 1011 1011 1008 ~ 480 87 
1"597 964 964 747 309 51 
1.740 1008 1008 546 223 42 
1"883 975 928 ~ 388 152 25 
2-027 982 685 284 112 28 
2-170 991 548 233 107 20 
2"313 963 370 145 56 9 
2.457 993 330 137 44 9 
2.600 984 245 95 42 10 

14 806 12 024 9518 7187 3734 Total 

Number lost due to 
O cut 0 2782 5288 7619 11 072 

Percentage lost due 
to 0 cut (%) 0 19 36 52 75 

Notes 
1. The symbol <- shows the first bin in each histogram affected by the 0 cut. 
2. The specific case treated is that for pea lectin (Helliwell, 1985). The third column (tz = 0.55) was presented previously in Helliwell 

(1985). 
3. Experimental conditions for PERQ prediction: 

,kmi n = 0 " 4 5 ,  Area  x = 2.6 A; q~ = 30 °, 8q~x = 0.1239, 6%, = 0.1282, 8q~z = -0"6254°; d m i n  = 2.6 ./k; reciprocal cell: a* = 0.0200322, b* = 
0.0166559, c* = 0.007447 .~-~. Film radius = 59,3 mm. 

4. Each wavelength bin is 0.144 A wide. 

T a b l e  7. T h e  multiplicity distributions of  recorded Laue rays as a function of  O~c~ 

Number recorded 
0ac ¢ (°) 30 20" 1 16"0 12"7 8"2 

Crystal to film 
Multiplicity of distance (mm) 34 70 95 125 200 

Laue ray /.t 1.0 0.69 0-55 0-44 0-29 

1 12 630 9863 ~ 7524 5431 2742 
2 704 695 649 ~ 559 282 
3 121 122 109 101 64 
4 43 43 41 35 25 
5 21 21 18 16 12 
6 3 3 2 2 1 
7 7 7 6 6 5 
8 3 3 3 3 1 
9 1 1 1 1 1 

10 1 1 1 1 0 
18 1 1 1 1 1 

Total number of RLPs 14 806 12 024 9518 7187 3734 

Total number of Laue rays 

Notes 

13 535 10 760 8355 6156 3134 

1. The symbol # indicates when a sizeable cut on the singles, doubles, triples has occurred. 
2. Experimental conditions are as for Table 6. 
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or body-centred (though the absolute number of these 
reflections of course differed). 

The theory also predicts that the proportions of 
multiple reflections are independent of the limiting 
crystal resolution D* (provided D'max < 2/Amax). That 
is, it will apply equally to crystals of small molecules 
or of simple inorganic compounds with cell 
dimensions of a few ~mgstr6ms, and to crystals of 
macromolecules such as viruses with cell dimensions 
of hundreds of ~]ngstr6ms which diffract to different 
D*. Here, too, agreement between theory and com- 
puter simulation is good. The only deviations occur 
for smaller unit cells, where the maximum indices are 
limited (§ 2) and there the fluctuations due to the 
smaller number of reflections are proportionally 
larger. 

10.2. Main  f indings  

Perhaps the most striking conclusion is that, even 
for the widest wavelength range that is readily acces- 
sible (say 0 . 3 < A < 3 . 0 ~ ) ,  the proportion of 
reciprocal-lattice points that lie on single rays exceeds 
83%. The remaining 17% are non-randomly dis- 
tributed in reciprocal space (§ 8). 

A second important conclusion is that the total 
number of single (and double) reflections is to a good 
approximation directly proportional to the 
wavelength range: the wider is the range, the more 
quantifiable data are accessible. Thus, a major advan- 
tage of the Laue method, namely the simultaneous 
stimulation of numerous Bragg reflections, is not 
accompanied by a more severe multiple-orders prob- 
lem. The advocacy by Helliwell (1984, p. 1468, 1985) 
of a somewhat wider wavelength range than that 
originally used by Moffat and colleagues (Moffat et 
al., 1984; Bilderback et al., 1984) is therefore justified. 
However, there are other experimental circumstances 
in which a more restricted wavelength range is advan- 
tageous (Moffat, Szebenyi & Bilderback, 1984). 

Thirdly, the effects of restricted angular acceptance 
of the detector are severe (§ 9). Data are lost when 
diffracted beams from stimulated reflections are not 
intercepted by the detector. The large majority of the 
lost reflections are single, and thus are potentially 
quantifiable data. We emphasize that in the Laue case 
a restriction on 0 is not simply a restriction on reso- 
lution, as it is in the monochromatic case. The lost 
reflections are predominantly, but not entirely, at high 
resolution and are largely stimulated by the longer 
wavelengths. The effects of a restriction on 0max may 
be seen in Table 6, where the number of reflections 
per wavelength interval is initially constant, then falls 
off with increasing wavelength as the restriction 
comes into play. The same problem affects the data 
obtained on phosphorylase b (Hajdu et al., 1986). Of 
course, the restriction on 0ace is determined by the 
need to minimize the loss of RLPs suffering spatial 
overlap. This is discussed further later. 

Although the multiple-orders problem is evidently 
not as serious as was initially believed, there are two 
further complexities associated with the Laue method 
which must be solved if it is to become a major 
structure-solving technique. Extraction of precise 
structure amplitudes from measured intensities 
requires, among other steps, the derivation and appli- 
cation of wavelength-dependent correction factors. A 
variety of strategies to determine these factors and 
accomplish the processing of Laue data is under 
development (Helliwell, 1985; Clifton et al., 1985; 
Campbell et al., 1986; Smith, Szebenyi, Schildkamp 
& Moffat, unpublished results). These are derived 
from the highly successful strategies for quantification 
of oscillation photographs (Arndt & Wonacott, 1979; 
Rossmann, 1979; Rossmann, Leslie, Abdel-Meguid 
& Tsukihara, 1979). 

The second complexity is that quantification of a 
Laue diffraction pattern requires that adjacent Laue 
reflections be clearly distinguished from each other. 
The very large number of reflections in a typical Laue 
pattern, obtained with wide wavelength range from 
a crystal with a densely populated reciprocal lattice, 
means that the average angular separation between 
each reflection and its nearest neighbour is small. For 
certain crystal orientations, reflections in principal 
zones may have angular separations that are substan- 
tially less than average. These constitute what Hel- 
liwell (1985) denotes 'spatial overlaps', as distinct 
from the exact overlaps of multiple orders, 'energy 
overlaps'. The proportion of Laue reflections desig- 
nated as spatial overlaps in principle depends on the 
crystal-to-detector distance, the diffracted beam size, 
the method of peak-profile fitting employed, the unit- 
cell parameters, the crystal orientation and the 
wavelength range. It may be substantial, as in the 
initial example provided by Helliwell (1985). 

The theory we have presented has considerable 
implications for the future collection of Laue data, 
in such areas as the nature of the X-ray source 
(bending magnet, wiggler or undulator); choice of 
X-ray optics (reflection and transmission X-ray mir- 
rors, multilayers and filters); design of the Laue 
camera to minimize unwanted angular restrictions, 
yet maintain the ability to separate adjacent reflec- 
tions; and choice of detector (film, image plate or 
electronic). Data-collection strategies can be devised 
to cover that small proportion of reflections found as 
multiple orders at a single crystal setting, and to 
exploit the symmetry of the diffraction pattern, for 
crystals belonging to systems other than triclinic. 
These experimental topics will be considered at length 
in a subsequent paper (Helliwell & Moffat, in prepar- 
ation). 
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is grateful  to the Royal  Society and  the J o h n  S imon  
G u g g e n h e i m  F o u n d a t i o n  for  f inancial  suppor t  dur ing  
his sabbat ica l  leave in Daresbury  and  York;  his 
research at Corne l l  is suppor t ed  by N I H  grant  RR- 
01646. The  au thors  are especia l ly  grateful  to M. Elder,  
P. A. M a c h i n  and  staff at the SERC,  Daresbury  
Labora to ry  for  the p rov i s ion  and  d e v e l o p m e n t  of  the 
sof tware  used in the c o m p u t e r  s imula t ions .  D W J C  
thanks  Dr  M. M. Hard ing  o f  the Univers i ty  of  Liver- 
pool  for s t imula t ing  ear ly  discuss ions  on  the Laue 
method .  

Note  added during publication. It is wi th  great  sad- 
ness tha t  we have  to record  that  M. Elder  and  P. A. 
M a c h i n  o f  Daresbury  Labora to ry  died in a c l imbing  
acc ident  on  7 March  1987. 
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Abstract 

A concise and very precise formula has been obtained 
for the density of a structure factor in space group 
P1 under the assumption that the atomic position 
vectors are distributed uniformly and independently 
over the unit cell. 

I. Introduction 

Let Eh = ( 2 / N  1/2) ~N(2 COS (27rr s . h) deno te  the nor-  
J= . . 

malized s t ructure  f~ictor for  reclprocal-lat t~ce vec tor  

0108-7673/87/050674-03 $01.50 

h in space group P1 for a unit cell containing N equal 
atoms. Now let Xl, x 2 , . . . ,  x, (n = N/2)be  n random 
vectors that are distributed independently and uni- 
formly over the unit cell and consider the random 
variable 

/ ~ h = ( 2 / N  1/2) ~ COS (27rxj.h) (n = N/2). (1) 
j=l  

Let us deno te  by E ~ R ( E )  the p robab i l i ty  dens i ty  of  
the r a n d o m  var iable  Lb. 
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